نوشته شده توسط : زپو
تاریخ انتشار : دو شنبه 10 خرداد 1395 | نظرات ()
نوشته شده توسط : زپو
تاریخ انتشار : دو شنبه 7 شهريور 1395 | نظرات ()
نوشته شده توسط : زپو

 الگوریتمهای ژنتیک


الگوریتم ژنتیک (Genetic Algorithm – GA) تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتمهای تکامل است که از تکنیکهای زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند. در واقع الگوریتم‌های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگو استفاده می‌کنند.الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. مختصراً گفته می‌شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند.مسئله‌ای که باید حل شود ورودی است و راه‌حلها طبق یک الگو کد گذاری می‌شوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی می‌کند که اکثر آنها به صورت تصادفی انتخاب می‌شوند. کلاً این الگوریتم‌ها از بخش های زیر تشکیل می‌شوند :  تابع برازش – نمایش – انتخاب –  تغییر

خرید و دانلود  الگوریتمهای ژنتیک




:: برچسب‌ها: الگوریتم ژنتیک , الگوریتم ژنتیک سری , الگوریتم ژنتیک موازی , الگوریتمهای تکامل , الگوریتمهای مینیمم یابنده , انتخاب بولتزمن , انواع الگوریتمهای ژنتیک , تابع برازش , تکنیک جستجوی ژنتیکی , تنازع بقا , جهش باینری , جهش حقیقی , روش محاطی , طرحواره , عملگرهای الگوریتم , کارب ,
:: بازدید از این مطلب : 166
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 20 شهريور 1395 | نظرات ()
نوشته شده توسط : زپو

 الگوریتم های ژنتیک موازی


تکنيک‌هاي محاسبات نرم، به هدف حل مسائل پيچيده با استفاده از روش‌هاي غيردقيق براي ارائه‌ي پاسخ‌هاي مفيد اما غيردقيق ارائه شده‌اند. برخلاف طرح‌هاي محاسبات سخت که پاسخ دقيق و کامل را جست‌وجو مي‌کنند، تکنيک‌هاي محاسبه‌ي نرم با راه‌دادن به روش‌هاي نادقيق، از پاسخ‌هايي نيمه‌درست و غيرقطعي براي مسائل خاص سود مي‌جويد. الگوريتم‌هاي ژنتيک که يکي از تکنيک‌هاي محاسبه‌ي نرم هستند، در اين سال‌ها به ابزارهاي محبوبي براي مسائل بهينه‌سازي تبديل شده‌اند. با اين حال زمان زيادي که اين الگوريتم‌ها براي يافتن پاسخ نزديک‌به‌بهينه صرف مي‌کنند، همواره استفاده از آن‌ها را براي حل مسائل بهينه‌سازي دشوار مي‌سازد. بر خلاف روش‌هاي دقيق، که در آن‌ها کارائي زماني الگوريتم اصلي‌ترين معيار اندازه‌گيري ميزان موفقيت آن است، در الگوريتم ژنتيک و ساير محاسبات نرم دو موضوع اصلي، در ارزيابي مورد توجه قرار مي‌گيرند: اينکه پاسخ چه‌قدر سريع پيدا مي‌شود؟ واينکه از بهينه‌ي اصلي چه‌قدر فاصله دارد؟ موازي‌سازي الگوريتم‌هاي ژنتيک، يکي از اساسي‌ترين و بهترين راه‌هايي است که مي‌تواند زمان بسيار زياد مورد نياز براي انجام گرفتن محاسبات ژنتيکي و رسيدن به نتيجه‌ي مطلوب براي حل مسئله توسط آن‌ها را به حد قابل قبولي برساند و امکان استفاده از اين الگوريتم‌ها‌ را، در زمان قابل قبول، فراهم کند. الگوريتم‌هاي ژنتيک موازي چه به لحاظ دست‌يابي به برازندگي بهتر براي کروموزوم‌ها (نتيجه‌ي مطلوب‌تر) و چه به لحاظ دسترسي به تسريع بالاتر و مقياس‌پذيريِ بيشتر، بهتر از الگوريتم‌هاي ژنتيک ترتيبي و تک‌جمعيتي عمل مي‌کنند.

فهرست :

مقدمه

پیدایش الگوریتم ژنتیک و روند اجرای آن

نحوه ی نمایش

گام ارزیابی و گام انتخاب

عملگرهای ژنتیک

سایز جمعیت

پارامترهای crossover 11

Exploration & Exploitation 13

چالشهایی که GA با آن رودررو است

فاکتورهای موثر در PGA 11

یادداشت های تاریخی روی PGA 11

نحوه ی کنترل در سیستمهای موازی

چگونه GA را موازی کنیم

طبقه بندی PGA 16

معیار ارزیابی کارآیی در الگوریتم ژنتیک موازی

نتیجه گیری

منابع و مراجع


خرید و دانلود  الگوریتم های ژنتیک موازی




:: برچسب‌ها: الگوریتم ژنتیک , الگوریتم ژنتیک موازی , انواع الگوریتم ژنتیک , پارامترهای crossover 11 , ژنتیک و روند اجرای آن , پیمان پورامینی , چالشهایی که GA با آن رودررو است , طبقه بندی PGA 16 , عملگرهای ژنتیک , فاکتورهای موثر در PGA 11 , معیار ارزیابی کارآیی در الگوریتم ژنتیک ,
:: بازدید از این مطلب : 162
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : شنبه 4 تير 1395 | نظرات ()

صفحه قبل 1 2 3 4 5 ... 6341 صفحه بعد